Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
BMC Microbiol ; 23(1): 316, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891478

RESUMO

BACKGROUND: Virulence determinants are crucial to the risk assessment of pathogens in an environment. This study investigated the presence of eleven key virulence-associated genes in Vibrio cholerae (n = 111) and Vibrio mimicus (n = 22) and eight virulence determinants in Vibrio alginolyticus (n = 65) and Vibrio parahaemolyticus (n = 17) isolated from six important water resources in Eastern Cape, South Africa, using PCR techniques. The multiple virulence gene indexes (MVGI) for sampling sites and isolates as well as hotspots for potential vibriosis outbreaks among sampling sites were determined statistically based on the comparison of MVGI. RESULT: The PCR assay showed that all the V. cholerae isolates belong to non-O1/non-O139 serogroups. Of the isolates, Vibrio Cholera (84%), V. mimicus (73%), V. alginolyticus (91%) and V. parahaemolyticus (100%) isolates harboured at least one of the virulence-associated genes investigated. The virulence gene combinations detected in isolates varied at sampling site and across sites. Typical virulence-associated determinants of V. cholerae were detected in V. mimicus while that of V. parahaemolyticus were detected in V. alginolyticus. The isolates with the highest MVGI were recovered from three estuaries (Sunday river, Swartkopps river, buffalo river) and a freshwater resource (Lashinton river). The cumulative MVGI for V. cholerae, V. mimicus, V. alginolyticus and V. parahaemolyticus isolates were 0.34, 0.20, 0.45, and 0.40 respectively. The targeted Vibrio spp. in increasing order of the public health risk posed in our study areas based on the MVGI is V. alginolyticus > V. parahaemolyticus > V. cholerae > V. mimicus. Five (sites SR, PA5, PA6, EL4 and EL6) out of the seventeen sampling sites were detected as the hotspots for potential cholera-like infection and vibriosis outbreaks. CONCLUSIONS: Our findings suggest that humans having contact with water resources in our study areas are exposed to potential public health risks owing to the detection of virulent determinants in human pathogenic Vibrio spp. recovered from the water resources. The study affirms the relevancy of environmental Vibrio species to the epidemiology of vibriosis, cholera and cholera-like infections. Hence we suggest a monitoring program for human pathogenic Vibrio spp. in the environment most especially surface water that humans have contact with regularly.


Assuntos
Cólera , Vibrioses , Vibrio cholerae , Vibrio mimicus , Vibrio parahaemolyticus , Vibrio , Humanos , Vibrio cholerae/genética , Vibrio mimicus/genética , Cólera/epidemiologia , Vibrio parahaemolyticus/genética , Vibrio alginolyticus/genética , Virulência/genética , África do Sul/epidemiologia , Recursos Hídricos , Vibrio/genética , Fatores de Virulência/genética
2.
PLoS One ; 18(8): e0290356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616193

RESUMO

The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.


Assuntos
Vibrio cholerae , Vibrio mimicus , Animais , Vibrio cholerae/genética , África do Sul , Virulência/genética , Antibacterianos/farmacologia , Ampicilina , Polimixinas , Resistência Microbiana a Medicamentos
3.
Sci Rep ; 13(1): 10746, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400612

RESUMO

The proliferation of antibiotic-resistant bacteria and antimicrobial resistance is a pressing public health challenge because of their possible transfer to humans via contact with polluted water sources. In this study, three freshwater resources were assessed for important physicochemical characteristics as well as heterotrophic and coliform bacteria and as potential reservoirs for extended-spectrum beta-lactamase (ESBL) strains. The physicochemical characteristics ranged from 7.0 to 8.3; 25 to 30 °C, 0.4 to 93 mg/L, 0.53 to 8.80 mg/L and 53 to 240 mg/L for pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD5) and total dissolved solids, respectively. The physicochemical characteristics mostly align with guidelines except for the DO and BOD5 in some instances. Seventy-six (76) Aeromonas hydrophila and 65 Escherichia coli O157: H7 isolates were identified by preliminary biochemical analysis and PCR from the three sites. Among these, A. hydrophila displayed higher frequencies of antimicrobial resistance, with all 76 (100%) isolates completely resistant to cefuroxime and cefotaxime and with MARI ≥ 0.61. The test isolates showed more than 80% resistance against five of the ten test antimicrobials, with resistance against cefixime, a cephalosporin antibiotic being the highest at 95% (134/141). The frequency of the detection of the resistance genes in the A. hydrophila isolates generally ranged between 0% (blaSHV) and 26.3% (blaCTX-M), while the frequency of detection among the E. coli O157:H7 isolates ranged between 4.6% (blaCTX-M) and 58.4% (blaTEM). Our findings indicate that the distribution of antibiotic-resistant bacteria with diverse ESBL-producing capabilities and virulence genes in freshwater sources potentially threatens public health and the environment.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Escherichia coli O157 , Humanos , Aeromonas hydrophila/genética , Nigéria , beta-Lactamases/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia
4.
Curr Microbiol ; 80(8): 254, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355481

RESUMO

Bacterial species responsible for food infections and intoxication are sometimes carried through the food production and processing. Very few published literatures exist on integrons among antibiotic-resistant staphylococcal strains from foods of animal origin in Gauteng Province, South Africa, hence this study. A total of 720 samples (360 meat and 360 dairies) from a community abattoir of a research farm in South Africa, using conventional bacteriological and molecular methods. Nine (9) bacterial strains, including Bacillus subtilis AYO-123, Acinetobacter baumannii AYO-241, Staphylococcus lentus AYO-352, among others were identified and submitted to GenBank. More bacterial strains were recovered from raw meat (90.5%) than dairy products (9.5%). Resistance was shown (0-100%) to Imipenem, Meropenem, Norfloxacin, Clindamycin, and 22 other antibiotics, without any carbapenem-resistant Acinetobacter baumannii and methicillin/vancomycin-resistant Staphylococcus species (MRSS/VRSS). Virulence genes for fibronectin-binding protein A (FnbA) were predominant (56.24%) followed by the circulating nucleic acids (cna) gene (43.75%). Others were staphylococcal enterotoxin A (sea, 41%), staphylococcal enterotoxin B (seb, 23.5%). Co-presence of sea and seb genes occurred in 11.76% of the isolates, but no coa genes was amplified. Antibiotic resistance genes (ARGs), tetK (70.58%), linA (29.4%), and ermA (11.76%) were detected, but none of the mecA and vat genes was amplified. Class 2 integron (50%) was more predominantly detected than integron 1 (25%), but no Class 3 integron was detected. Bacteria with both the detected virulence and antibiotic resistance genes are of potential risks to human health.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Antibacterianos/farmacologia , Integrons/genética , Virulência , África do Sul , Resistência Microbiana a Medicamentos , Laticínios , Carne , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37128712

RESUMO

Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.


Assuntos
Bibliometria , Estados Unidos , China
6.
Sci Rep ; 13(1): 7749, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173379

RESUMO

A smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines associated with its determination. This study aimed to predict AD in waterbodies using machine learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard protocols in a year-long study were fitted to 18 ML algorithms. The models' performance was assayed using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB [3.1792 (1.1040-4.5828)] and Cubist [3.1736 (1.1012-4.5300)] outshined other algorithms. Also, XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, R2 = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 43.00-83.30% mean dropout RMSE loss after 1000 permutations. The two models' partial dependence and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological quality of waterbodies for irrigation and other purposes.


Assuntos
Acinetobacter , Águas Residuárias , Humanos , Rios , Convulsões , Aprendizado de Máquina
7.
Front Cell Infect Microbiol ; 13: 1122059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936767

RESUMO

Introduction: Staphylococcus aureus causes staphylococcal food poisoning and several difficult-to-treat infections. The occurrence and dissemination of methicillin-resistance S. aureus (MRSA) in Nigeria is crucial and well documented in hospitals. However, findings on MRSA from meat in the country are yet to be adequately reported. The current study determined the prevalence, virulence profile and antibiogram characteristics of MRSA from a raw chicken product from retail outlets within Edo. Methods: A total of 368 poultry meat samples were assessed for MRSA using a standard culture-based approach and characterized further using a molecular method. The antimicrobial susceptibility profile of the isolates was determined using the disc diffusion method. The biofilm profile of the isolates was assayed via the crystal violet microtitre-plate method. Virulence and antimicrobial resistance genes were screened using polymerase chain reaction via specific primers. Results: Of the samples tested, 110 (29.9%) were positive for MRSA. All the isolates were positive for deoxyribonuclease (DNase), coagulase and beta-hemolysis production. Biofilm profile revealed 27 (24.55%) weak biofilm formers, 18 (16.36%) moderate biofilm formers, and 39 (35.45%) strong biofilm formers. The isolates harboured 2 and ≤17 virulence genes. Enterotoxin gene profiling revealed that 100 (90.9%) isolates harboured one or more genes. Resistance against the tested antibiotics followed the order: tetracycline 64(58.2%), ciprofloxacin 71(64.6%), trimethoprim 71(64.6%) and rifampin 103(93.6%). A total of 89 isolates were multidrug-resistant, while 3 isolates were resistant to all 22 antibiotics tested. The isolates harboured antimicrobial-resistant determinants such as methicillin-resistant gene (mecA), tetracycline resistance genes (tetK, tetL), erythromycin resistance genes (ermA, ermC), trimethoprim resistance gene (dfrK). All the staphylococcal cassette chromosome mec (SCCmec) IVa and SCCmec V positive isolates harboured the Panton-Valentine Leukocidin Gene (PVL). Conclusion: In conclusion, S. aureus was resistant to commonly used antibiotics; a concern to public health concerning the transmission of these pathogens after consuming these highlight the significance of antimicrobial and enterotoxigenic monitoring of S. aureus in food chains.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Virulência/genética , Aves Domésticas , Prevalência , Nigéria/epidemiologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus , Testes de Sensibilidade Microbiana , Carne , Resistência Microbiana a Medicamentos
8.
PLoS One ; 18(2): e0281329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735693

RESUMO

Salmonella is responsible for some foodborne disease cases worldwide. It is mainly transmitted to humans through foods of animal origin through the consumption of poultry products. The increased international trade and the ease of transboundary movement could propel outbreaks of local origin to translate into severe global threats. The present study aimed to characterize Salmonella serovars isolated from poultry farms in Edo and Delta States, Nigeria. A total of 150 samples (faecal, water and feed) were collected from ten poultry farms between January and August 2020 and analyzed for Salmonella characterization using standard bacteriological and molecular methods. Salmonella serovars identified include: Salmonella Enteritidis [n = 17 (39.5%)], Salmonella Typhimurium [n = 13 (30.2%)] and other Salmonella serovars [n = 13 (30.2%)]. All Salmonella serovars were cefotaxime and ampicillin resistant. The presence of the invA gene ranged from 9(69.2%) to 15(88.2%). The spvC gene ranged from 2(14.4%) to 10(58.8%). All Salmonella serovars had sdiA gene. The Salmonella isolates produced some extracellular virulence factors (such as protease, lipase, ß-hemolytic activity, and gelatinase), while 13(30.2%) of the overall isolates formed strong biofilms. In conclusion, the detection of multiple antibiotic-resistant Salmonella serovars in faecal sources, which also exhibited virulence determinants, constituted a public health risk as these faecal samples have the potential as manure in the growing of crops. These pathogens can be transmitted to humans nearby and through poultry products, resulting in difficult-to-treat infections and economic loss.


Assuntos
Comércio , Farmacorresistência Bacteriana Múltipla , Aves Domésticas , Animais , Humanos , Antibacterianos/farmacologia , Internacionalidade , Nigéria/epidemiologia , Salmonella enteritidis/genética , Fatores de Virulência/genética
9.
Environ Technol ; 44(3): 293-303, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34397312

RESUMO

Keratinous biomass valorization for value-added products presents a high prospect in ecological management and the advancement of the bio-economy. Consequently, soil samples from the poultry dumpsite were collected. The bacteria isolated on the basal salt medium were screened for keratinolytic activity. The potent chicken feathers degrading bacteria were identified through 16S rRNA gene sequencing and phylogenetic analysis. Fermentation process conditions were optimized, and the amino acid compositions of the feather hydrolysate were likewise quantified. Ten (10) proteolytic bacteria evaluated on skimmed milk agar showed intact chicken feather degradation ranging from 33% (WDS-03) to 88% (FPS-09). The extracellular keratinase activity ranged from 224.52 ± 42.46 U/mL (WDS-03) to 834.55 ± 66.86 U/mL (FPS-07). Based on 16S rRNA gene sequencing and phylogenetic analysis, the most potent keratinolytic isolates coded as FPS-07, FPS-09, FPS-01, and WDS-06 were identified as Chryseobacterium aquifrigidense FANN1, Chryseobacterium aquifrigidense FANN2, Stenotrophomonas maltophilia ANNb, and Bacillus sp. ANNa, respectively. C aquifrigidense FANN2 maximally produced keratinase (1460.90 ± 26.99 U/mL) at 72 h of incubation under optimal process conditions of pH (6), inoculum side (5%; v/v), temperature (30°C), and chicken feather (25 g/L). The feather hydrolysate showed a protein value of 67.54%, with a relative abundance of arginine (2.84%), serine (3.14%), aspartic acid (3.33%), glutamic acid (3.73%), and glycine (2.81%). C. aquifrigidense FANN2 yielded high keratinase titre and dismembered chicken feathers into amino acids-rich hydrolysate, highlighting its significance in the beneficiation of recalcitrant keratinous wastes into dietary proteins as potential livestock feed supplements.


Assuntos
Galinhas , Plumas , Animais , Galinhas/genética , Galinhas/metabolismo , Plumas/química , Plumas/metabolismo , Plumas/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Aminoácidos/análise , Aminoácidos/genética , Aminoácidos/metabolismo , Queratinas/análise , Queratinas/genética , Queratinas/metabolismo , Concentração de Íons de Hidrogênio
10.
Environ Geochem Health ; 45(5): 1231-1260, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35798909

RESUMO

Herbicides are chemicals used globally to kill unwanted plants so as to obtain high agricultural yields and good agricultural products. Herbicides are sometimes transported from the farmlands into water bodies mainly through runoffs. These chemicals are recalcitrant, and their accumulation is hazardous to abiotic and biotic components of the ecosystem. At present, the best alternative technology for elimination of herbicides in water is the usage of advanced oxidation processes (AOPs). The AOPs, which are performed homogeneously or heterogeneously, are capable of breaking down complex pollutants in water into carbon dioxide and mineral compounds. In these processes, ·OH is produced and used for degradation process. It is recommended that the total organic carbon (TOC) produced during degradation reaction be monitored because the ‧OH produced or generated can react to form intermediates before complete mineralisation is achieved. Different kinds of AOPs for degradation of herbicides have their specific advantages as well as limitations. This report shows that AOPs are excellent techniques for degradation of herbicides in aqueous solutions, and the mechanisms showed that herbicides were mineralised. The amount and type of photocatalysts, pH of the medium, surface characteristics of the photocatalysts, doping of the photocatalysts, temperature of the medium, concentration of herbicides, presence of competing ions, intensity and irradiation period, and type of oxidants have great influence on the degradation of herbicides in water. Overall, this report showed that most AOPs could not completely degrade herbicides in water and complete degradation can be achieved by developing novel and robust AOPs that will completely mineralise herbicides in water-this will pave way for water and environmental safety.


Assuntos
Herbicidas , Poluentes Químicos da Água , Purificação da Água , Herbicidas/química , Ecossistema , Oxirredução , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Environ Geochem Health ; 45(5): 1289-1309, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35933629

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world's ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Poluentes Ambientais/análise , Biodegradação Ambiental , Bibliometria , Monitoramento Ambiental
12.
Environ Pollut ; 317: 120734, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455774

RESUMO

Seasonal variations (SVs) affect the population density (PD), fate, and fitness of pathogens in environmental water resources and the public health impacts. Therefore, this study is aimed at applying machine learning intelligence (MLI) to predict the impacts of SVs on P. shigelloides population density (PDP) in the aquatic milieu. Physicochemical events (PEs) and PDP from three rivers acquired via standard microbiological and instrumental techniques across seasons were fitted to MLI algorithms (linear regression (LR), multiple linear regression (MR), random forest (RF), gradient boosted machine (GBM), neural network (NN), K-nearest neighbour (KNN), boosted regression tree (BRT), extreme gradient boosting (XGB) regression, support vector regression (SVR), decision tree regression (DTR), M5 pruned regression (M5P), artificial neural network (ANN) regression (with one 10-node hidden layer (ANN10), two 6- and 4-node hidden layers (ANN64), and two 5- and 5-node hidden layers (ANN55)), and elastic net regression (ENR)) to assess the implications of the SVs of PEs on aquatic PDP. The results showed that SVs significantly influenced PDP and PEs in the water (p < 0.0001), exhibiting a site-specific pattern. While MLI algorithms predicted PDP with differing absolute flux magnitudes for the contributing variables, DTR predicted the highest PDP value of 1.707 log unit, followed by XGB (1.637 log unit), but XGB (mean-squared-error (MSE) = 0.0025; root-mean-squared-error (RMSE) = 0.0501; R2 =0.998; medium absolute deviation (MAD) = 0.0275) outperformed other models in terms of regression metrics. Temperature and total suspended solids (TSS) ranked first and second as significant factors in predicting PDP in 53.3% (8/15) and 40% (6/15), respectively, of the models, based on the RMSE loss after permutations. Additionally, season ranked third among the 7 models, and turbidity (TBS) ranked fourth at 26.7% (4/15), as the primary significant factor for predicting PDP in the aquatic milieu. The results of this investigation demonstrated that MLI predictive modelling techniques can promisingly be exploited to complement the repetitive laboratory-based monitoring of PDP and other pathogens, especially in low-resource settings, in response to seasonal fluxes and can provide insights into the potential public health risks of emerging pathogens and TSS pollution (e.g., nanoparticles and micro- and nanoplastics) in the aquatic milieu. The model outputs provide low-cost and effective early warning information to assist watershed managers and fish farmers in making appropriate decisions about water resource protection, aquaculture management, and sustainable public health protection.


Assuntos
Plesiomonas , Estações do Ano , Densidade Demográfica , Redes Neurais de Computação , Aprendizado de Máquina
13.
Sci Rep ; 12(1): 20102, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418342

RESUMO

4-tert-Octylphenol (4-tOP) is a component of non-ionic surfactants alkylphenol polyethoxylates while triclosan (TCS) is an antibacterial present in personal care products. Both compounds can co-exist in environmental matrices such as soil and water. The mixture effects of these micropollutants in vitro remains unknown. INS-1 cells were exposed to 20 µM or 30 µM 4-tOP and 8 µM or 12.5 µM TCS as well as equimolar mixture of the chemicals (Mix) in total concentration of 12.5 µM or 25 µM for 48 h. Mitochondrial related parameters were investigated using high content analytical techniques. The cytotoxicity of the chemicals (IC50) varied according to TCS > Mix > 4-tOP. Increased glucose uptake and loss of mitochondrial membrane potential were recorded in TCS and Mix treated cells. Fold values of glucose-galactose assay varied according to dinitrophenol > TCS > 4-tOP > Mix in decreasing order of mitochondrial toxicity. The loss of the intracellular Ca2+ influx by all the test substances and Mix was not substantial whereas glibenclamide and diazoxide increased the intracellular Ca2+ influx when compared with the Blank. The recorded increase in Ca2+ influx by diazoxide which contrasted with its primary role of inhibiting insulin secretion need be re-investigated. It is concluded that the toxic effects of TCS and Mix but not 4-tOP on INS-1 cells was mitochondria-mediated.


Assuntos
Disruptores Endócrinos , Triclosan , Disruptores Endócrinos/toxicidade , Diazóxido , Mitocôndrias , Bioensaio
14.
Sci Rep ; 12(1): 18912, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344620

RESUMO

Vibrio species are classified as potent hazards because of their tendency to effect serious diseases like cholera and other gastrointestinal ailments in humans, as well as vibriosis in fish. A total of 144 freshwater samples were aseptically collected monthly across four rivers (Asejire, Ona, Dandaru and Erinle rivers) over a 12-month period from which Vibrio spp. were isolated using culture procedures, confirmed by means of biochemical test as well as Polymerase Chain Reaction (PCR) assay and further characterized for their phenotypic antibiotic susceptibilities and relevant antimicrobial resistant determinants by PCR. Three hundred and fifteen (58%) isolates confirmed across the sampled sites (Asejire = 75, Dandaru = 87, Eleyele = 72, Erinle = 81) showed high resistance against erythromycin-95%, Sulphamethoxazole-94%, rifampicin-92%, doxycycline-82%, tetracycline-75%, amoxicillin-45%, cephalothin-43% and varied susceptibilities to other antibiotics. The multiple antibiotic resistance indices of 97% of the Vibrio isolates were above the 0.2 threshold limit with MAR phenotype pattern E-SUL-RF-TET-DOX (0.38) found to be the most prevalent pattern among the isolates. The distributions of resistance determinant of the tested antibiotics were revealed as follows: sulII 33%, sulI 19% (sulfonamides); blaOXA 27%, ampC 39%, blapse 11% (beta-lactams); tetA 28%, tetE 20%, tet39 8%, (tetracyclines) and strA 39%. aacC2 24%, aphA1 14% (aminoglycosides). Strong positive associations were observed among tetA, sulI, tetE and sulII. This study raises concerns as these selected rivers may contribute to the environmental spread of waterborne diseases and antibiotic resistance genes. Therefore, we recommend environmental context-tailored strategies for monitoring and surveillance of resistance genes so as to safeguard the environment from becoming reservoirs of virulent and infectious Vibrio species.


Assuntos
Farmacorresistência Bacteriana Múltipla , Vibrio , Animais , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Incidência , Nigéria , Vibrio/genética , Água Doce , Antibacterianos/farmacologia , Genótipo
15.
Antibiotics (Basel) ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36290011

RESUMO

Fresh vegetables play a significant role in the human diet. However, ready-to-eat (RTE) vegetables have been associated with increasing foodborne outbreaks including L. monocytogenes, which is a common human pathogen associated with foodborne infections resulting in listeriosis. This study aims to assess the resistance of vegetable-borne L. monocytogenes to antibiotics. L. monocytogenes was isolated and molecularly characterized using polymerase chain reaction (PCR) from 17 RTE vegetable samples. The confirmed L. monocytogenes was further assessed for phenotypic and genotypic antibiotic resistance using the disc diffusion test and PCR primers targeting six antibiotic classes and thirty-one related antibiotic resistance genes (ARGs), respectively. The results revealed that Listeria counts ranged from 1.60 to 3.44 log10 CFU/g in the samples. The isolates exhibited high resistance against penicillin G, erythromycin, vancomycin, tetracycline, trimethoprim-sulfamethoxazole, and nitrofurantoin among the 108 isolates tested. A total of 71 multiple antibiotic resistance (MAR) phenotypes were observed in the isolates, which ranged from resistance to 3 to 13 antibiotics. The MAR index was ˃0.2 in 97% of the isolates. Some of the highly detected ARG subtypes included SulI (100%), TEM (76.9%), tetA (59%), and tetM (54.7%). The findings show a high occurrence of multidrug-resistant L. monocytogenes and clinical ARGs in fresh vegetables, which constitutes an immediate danger for the health security of the public.

16.
Arch Microbiol ; 204(6): 323, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567650

RESUMO

Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.


Assuntos
Cólera , Vibrio cholerae , Animais , Cólera/epidemiologia , Diarreia , Filogenia , Água
17.
PLoS One ; 17(4): e0266059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381048

RESUMO

The study aimed to recover diarrheagenic Escherichia coli strains from processed ready-to-eat (RTE) foods in Yenagoa, Nigeria and characterize them using culture-based and molecular methods. Three hundred RTE food samples were collected randomly from different food outlets between February 2021 and August 2021 and assessed for the occurrence of E. coli using standard bacteriological procedures. The virulence factor formation and antibiotic susceptibility profile of the isolates was carried out using standard microbiological procedures. Polymerase chain reaction (PCR) was used to confirm the identity of the isolates via specific primers and further used to assay the diarrheagenic determinants of the E. coli isolates. The prevalence of E. coli positive samples based on the proliferation of E. coli on Chromocult coliform agar forming purple to violet colonies was 80(26.7%). The population density of E. coli from the RTE foods ranged from 0-4.3 × 104 ± 1.47 CFU/g. The recovered E. coli isolates (n = 62) were resistant to antibiotics in different proportions such as ampicillin 62(100%), aztreonam 47(75.81%) and chloramphenicol 43(69.35%). All the recovered E. coli isolates were resistant to ≥ 2 antibiotics. The multiple antibiotic-resistant index (MARI) ranged from 0.13-0.94 with 47(75.8%) of isolates having MARI >2. A total of 48(77.4%) of the isolates were multidrug-resistant (MDR). The proportion of extracellular virulence factor formation is as follows: protease 12(19.35%), curli 39(62.9%), cellulose 21(33.89%), ornithine decarboxylase 19(30.65%) and aesculin hydrolysis 14(22.58%). The overall proportion of diarrheagenic E. coli was 33/62(53.2%). The distributions of typical diarrheagenic E. coli includes: tETEC 9(14.5%), tEPEC 13(20.9%), tEAEC 6(9.7%), tEIEC 2(3.2%) and tEHEC 3(4.8%). The proportions of atypical strains include aETEC 10(16.1%), aEAEC 5(8.1%), aEPEC 1(1.6%) and aEIEC 3(4.8%). This study demonstrated that some RTE foods sold in Yenagoa, Nigeria, are contaminated and constitute a probable human health hazard. Thus, there is a need for intensive surveillance of this isolate in RTE foods variety to spot evolving AMR phenotypes and avert food-borne infections.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Antibacterianos/farmacologia , Escherichia coli/genética , Humanos , Nigéria , Fatores de Virulência/genética
18.
Sci Total Environ ; 807(Pt 2): 150706, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34600994

RESUMO

Reports of vibriosis and other related gastrointestinal infections have remained a recurring concern in the diverse global continent. The safety of drinking surface water and associated environmental pollution has remained a public health concern in limited resource sittings. Seen in this light, we report the antibiogram signatures of Vibrio species recovered from surface waters in the South-Western districts of Uganda. Surface water samples were collected for four months for Vibrio species isolation in four districts (Bushenyi-B, Mitooma-M, Rubirizi-R, and Sheema-S) using bacteria culture procedures, disc diffusion and Polymerase Chain Reaction (PCR) technique. Isolates were characterised, and the antibiotic fingerprints were determined using PCR and nine selected antibiotics in routine use. A total of 392 Vibrio species were confirmed from the various districts (B: 172, M: 79. R: 60, S: 81), with 163 (94.77%) resistant to colistin (polymixin), 145 (84.3%) resistant to cefotaxime, 127 (73.84%) resistant to azithromycin, and 33 (19.19%) resistant to chloramphenicol among Bushenyi isolates. A similar high resistance to fluoroquinolones and carbapenem antibiotics were also recorded in other districts of the study area. A complete multiple antibiotic resistance phenotype ((M)ARPs) to the applied antibiotics (A-CTX-CXM-MEM-ATH-K-TM-C-PB-NI-CIP-NA) were also recorded among some isolates, which produced multiple antibiotic resistance indexes of 1, suggesting a high-risk source of contamination due to the usage of several antibiotics. The PCR reports also confirm ampC gene {20 (10.9%)}, beta-lactamase TEM gene (blaTEM2), {30 (10%)} and dihydropteroate synthase type-1 and 11 gene (sul 1 & 11) {16 (8%)}. The results present an implicated environmental pollution problem and a potential concern to public health, therefore there is the need for control of such infectious bacteria and environmental pollution monitoring. Hence, it is recommended various approaches crucial to monitoring of emerging trends in drug resistance at the local and international levels.


Assuntos
Vibrio , Poluição Ambiental , Controle de Infecções , Testes de Sensibilidade Microbiana , Uganda/epidemiologia
19.
Sci Rep ; 11(1): 22429, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789791

RESUMO

Adequate water supply is one of the public health issues among the population living in low-income settings. Vibriosis remain a significant health challenge drawing the attention of both healthcare planners and researchers in South West districts of Uganda. Intending to clamp down the disease cases in the safest water deprive locality, we investigated the virulent toxins as contaminants and epidemiologic potentials of Vibrio species recovered from surface waters in greater Bushenyi districts, Uganda. Surface water sources within 46 villages located in the study districts were obtained between June and October 2018. Standard microbiological and molecular methods were used to analyse samples. Our results showed that 981 presumptive isolates retrieved cell counts of 10-100 CFU/g, with, with (640) 65% confirmed as Vibrio genus using polymerase chain reaction, which is distributed as follows; V. vulnificus 46/640 (7.2%), V. fluvialis 30/594 (5.1), V. parahaemolyticus 21/564 (3.7), V. cholera 5/543 (0.9), V. alginolyticus 62/538 (11.5) and V. mimicus 20/476 (4.2). The virulence toxins observed were heat-stable enterotoxin (stn) 46 (82.10%), V. vulnificus virulence gene (vcgCPI) 40 (87.00%), extracellular haemolysin gene {vfh 21 (70.00)} and Heme utilization protein gene {hupO 5 (16.70)}. The cluster analysis depicts hupO (4.46% n = 112); vfh (18.75%, n = 112); vcgCPI and stn (35.71%, & 41.07%, n = 112). The principal component analysis revealed the toxins (hupO, vfh) were correlated with the isolate recovered from Bohole water (BW) source, while (vcgCPI, stn) toxins are correlated with natural raw water (NRW) and open springs (OS) water sources isolates. Such observation indicates that surface waters sources are highly contaminated with an odds ratio of 1.00, 95% CI (70.48-90.5), attributed risk of (aR = 64.29) and relative risk of (RR = 73.91). In addition, it also implies that the surface waters sources have > 1 risk of contamination with vfh and > six times of contamination with hupO (aR = 40, - 66). This is a call of utmost importance to the population, which depends on these water sources to undertake appropriate sanitation, personal hygienic practices and potential measures that ensure water quality.


Assuntos
Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Nascentes Naturais/microbiologia , Vibrioses/prevenção & controle , Vibrio/genética , Vibrio/patogenicidade , Fatores de Virulência/análise , Fatores de Virulência/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/genética , Reação em Cadeia da Polimerase/métodos , Uganda/epidemiologia , Vibrio/classificação , Vibrioses/epidemiologia , Vibrioses/microbiologia , Virulência/genética
20.
Pathogens ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578140

RESUMO

The outbreak of the 2019 coronavirus pandemic caught the world by surprise in late 2019 and has held it hostage for months with an increasing number of infections and deaths. Although coronavirus was first discovered in the 1960s and was known to cause respiratory infection in humans, no information was available about the epidemic pattern of the virus until the past two decades. This review addresses the pathogenesis, transmission dynamics, diagnosis, management strategies, the pattern of the past and present events, and the possibility of future outbreaks of the endemic human coronaviruses. Several studies have described bats as presumptive natural reservoirs of coronaviruses. In essence, the identification of a diverse group of similar SARS coronaviruses in bats suggests the possibility of a future epidemic due to severe acute respiratory syndrome (SARS-like) coronaviruses originating from different reservoir hosts. The study also identified a lack of vaccines to prevent human coronavirus infections in humans in the past, however, the recent breakthrough in vaccine discovery and approval for emergency use for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 is commendable. The high rates of genomic substitution and recombination due to errors in RNA replication and the potential for independent species crossing suggest the chances of an entirely new strain evolving. Therefore, rapid research efforts should be deployed for vaccination to combat the COVID-19 pandemic and prevent a possible future outbreak. More sensitization and enlightenment on the need to adopt good personal hygiene practices, social distancing, and scientific evaluation of existing medications with promising antiviral effects against SARS-CoV-2 is required. In addition, intensive investigations to unravel and validate the possible reservoirs, the intermediate host, as well as insight into the ability of the virus to break the species barrier are needed to prevent future viral spillover and possible outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...